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Perspective

Chaos, but in voting and apportionments?

Donald G. Saari*
Department of Mathematics, Northwestern University, Evanston, IL 60208-2730

Mathematical chaos and related concepts are used to explain and resolve issues ranging from voting paradoxes to the apportioning
of congressional seats.

Although the phrase ‘‘chaos in voting’’ may suggest the complex-
ity of political interactions, here I indicate how ‘‘mathematical
chaos’’ helps resolve perplexing theoretical issues identified as
early as 1770, when J. C. Borda (1) worried whether the way the
French Academy of Sciences elected members caused inappro-
priate outcomes. The procedure used by the academy was the
widely used plurality system, where each voter votes for one
candidate. To illustrate the kind of difficulties that can arise in this
system, suppose 30 voters rank the alternatives A, B, C, and D as
follows (where ‘‘s’’ means ‘‘strictly preferred’’):

The A s B s C s D plurality outcome, where only
top-ranked candidates are voted for, suggests that A is the
voters’ candidate of choice. But is she? If any candidate or pair
drops out, the new plurality ranking flips to agree with the
reversed D s C s B s A. For example, if C drops out, the D s
B s A outcome has a 11:10:9 tally. If B and D drop out, the
C s A outcome has a 21:9 tally. It is arguable that D, not A,
is the candidate of choice, even though D is plurality bottom
ranked.

This disturbing election change as candidates leave is but
one difficulty. For another, instead of considering just each
voter’s top-ranked candidate, include more ranking informa-
tion. A way to do so is with a positional method, where points
are assigned to alternatives according to how voters rank them.
To illustrate with four candidates, the assigned weights are
given by a voting vector w4 5 (w1, w2, w3, 0), w $ wj11, w1 .
0. Surprisingly, the outcome can depend on the voting method.
Indeed, with Table 1 preferences, each alternative wins with an
appropriate choice of w4. To illustrate with a simpler 10-voter
profile (a profile lists all voters’ preferences):

A wins with the plurality vote (1, 0, 0, 0), B wins by voting
for two candidates, that is, with (1, 1, 0, 0), C wins by voting
for three candidates, and D wins with the method proposed by
Borda, now called the Borda Count (BC), where the weights
are (3, 2, 1, 0). Namely, election outcomes can more accurately
reflect the choice of a procedure rather than the voters’
preferences. This aberration raises the realistic worry that
inadvertently we may not select whom we really want.

‘‘Bad decisions’’ extend into, say, engineering, where one
way to decide among design (material, etc.) alternatives is to
assign points to alternatives based on how they rank over
several criteria. A ‘‘best of the best’’ approach, selecting the
alternative that is top ranked over more criteria, is equivalent
to the plurality vote (1, 0, 0, 0). A conservative approach of
selecting the alternative that is bottom ranked over the fewest
criteria is equivalent to (1, 1, 1, 0). By interpreting ‘‘voters’’ as
‘‘criteria,’’ Table 2 proves that engineering decisions can
reflect the procedure rather than carefully assembled data.

The U.S. Supreme Court

A second ‘‘chaotic’’ concern is where apportionments are
made proportionally according to collected data; this includes
the proportional voting methods widely used in Europe and
South America, where the number of seats a political party
wins in an election is proportional to the number of votes they
receive. For simplicity, emphasis is placed on the closely
related problem, where the apportionment of congressional
seats to states in the U.S. is done according to census figures.
The political importance of this assignment of representatives
has generated controversy leading to a recent U.S. Supreme
Court decision about statistical census techniques. But other
mathematical difficulties most surely will generate Supreme
Court cases during the next decade. The problem arises
because the states’ exact apportionments usually involve frac-
tions; how should they be rounded off? One approach assigns
each state the integer value of its exact apportionment and
assigns remaining seats according to the fractional parts. In the
Table 3 three-state example and house size of 10, the integer
values assign nine of the ten seats. State A receives the extra
seat because it has the largest decimal remainder.

With house size 11, however, the A, B, C exact apportionments
are, respectively, 2.607, 3.663, and 4.73, so A loses representation,
while B and C gain with the 2, 4, 5 apportionment. Rather than
an amusing exercise, this example characterizes problems where
several states, such as Alabama and Maine, lost seats with
increases in the number of representatives; it is related to George
Washington’s first Presidential veto over competing methods
of handling these apportionment difficulties; and it is why
Congress has 435 seats. (The house size was adjusted to 435 to
avoid just this mathematical peculiarity with the 1910 census.)

*To whom reprint requests should be addressed. E-mail: dsaari@
nwu.edu.

Table 1. Thirty-voter example

Number Ranking

3 A s C s D s B
6 A s D s C s B
3 B s C s D s A
5 B s D s C s A
2 C s B s D s A
5 C s D s B s A
2 D s B s C s A
4 D s C s B s A

Table 2. Ten-voter example

Number Preference

2 A s B s C s D
1 A s C s D s B
2 A s D s C s B
2 C s B s D s A
3 D s B s C s A
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Voting Procedures

For over two centuries, problems caused by dropping candi-
dates from the voting list or changing voting procedures have
created an enormous rapidly growing literature (www.
maxwell.syr.eduymaxpagesyfacultyyjskellyybiblioho.htm). For
example, it was discovered that the plurality outcome can be
reversed by dropping the bottom-ranked candidate, or that two
different procedures can have reversed outcomes with the
same voter preferences (2). The introductory examples prove
that much more can go wrong.

Although important, positional procedures (that is, ballots
that are tallied with a specified voting vector) have proved to
be formidable to analyze. The underlying complexity is sug-
gested by how societal outcomes can change by dropping
alternatives, or by how these procedures can generate millions
of different election rankings with one 10-candidate profile
(3): once the ballots are marked, the voters’ opinions remain
fixed, but varying the tallying method generates millions of
contradictory outcomes, where each alternative wins with
some procedures but is bottom ranked with others. So, which
conflicting outcome reflects the ‘‘voters’ opinions?’’ The com-
plexity is further underscored by K. Arrow’s (4) seminal result
suggesting that all nondictatorial voting procedures have flaws.
A natural reaction is a (5) resigned attitude that ‘‘[t]he choice
of a positional voting method is subjective.’’

To respond, a first goal is to identify all possible paradoxes
that can occur with any profile. Do the above examples
essentially catalogue all oddities that can occur with vote
tallying procedures, or can more convoluted changes in elec-
tion outcomes occur? Beyond the complexity of the standard
combinatoric analysis, what hinders achieving this goal is the
nature of a ‘‘paradox’’—a counterintuitive outcome. Namely,
if the goal is to discover everything we do not expect to occur,
what do we look for? ‘‘Chaos’’ helps overcome these funda-
mental difficulties.

Chaos

In using chaos, dynamical aspects such as ‘‘homoclinic
points’’ and ‘‘fractals’’ do not appear. Instead, concepts of
chaos and symbolic dynamics are modified to create new
techniques. To indicate the approach, the iterative dynamical
system pn11 5 f(pn), with starting point p0, defines trajectory
(p0, p1, . . . , pn, . . . ). By partitioning phase space into
regions, for example A, B, . . . , Z, an associated sequence—a
word—is created by replacing each pj with a symbol repre-
senting its containing region. For instance, the word (A, C,
D, B, B, . . . ) starts with p0 in region A, p1 in C, . . . . As
different words capture different dynamical behaviors, a goal
is to identify all words. Each word proves that a starting point
p0 exists whose orbit has the specified qualitative behavior
(see textbooks, refs. 6, 7).

This objective of finding all words is similar to the goal of
finding all voting paradoxes. Replacing pj is the election tally
of the jth subset of candidates. Instead of partitioning phase
space, the symbols represent rankings of each subset of
candidates. What replaces p0 is a profile, for example, such as
Tables 1 and 2. A ‘‘word’’ becomes a listing of election
rankings, one for each subset of candidates; it establishes the
existence of a profile where each subset’s election outcome is

as specified. By using techniques motivated by concepts from
chaos, all paradoxes now can be identified. The conclusion as
captured by the following theorem is most discouraging for a
democracy.

THEOREM 1 (8): For n $ 3 alternatives, select a ranking for
each of the 2n 2 (n 1 1) subsets of two or more alternatives. There
exists a profile where each subset’s sincere plurality election
ranking is the selected ranking.

According to this assertion, anything can happen in the same
voters’ plurality election rankings when different subsets of
candidates are considered. There is a profile, for instance,
where the plurality ranking of each subset with an even number
of alternates agrees with A s B s. . . s Z, but when the same
voters sincerely rank a subset with an odd number of alterna-
tives, the outcome flips to agree with Z s. . . s A. Even worse,
as a way to prove that there need not be any relationship among
election rankings, Theorem 1 allows us to use a random number
generator to select the ranking for each subset of candidates.
Then Theorem 1 ensures that a profile exists where each
subset’s sincere election ranking is the randomly generated
one. Thus, Theorem 1 is a worrisome chaotic conclusion about
our widely used election tool of the plurality vote—and about
decisions we have made.

With all its lack of consistency in election outcomes, it is
reasonable to wonder whether the plurality vote can be
improved on. A way to examine this question is to characterize
all outcomes for all ways to tally the ballots for each subset of
candidates. The news is as discouraging as the results from
Theorem 1; in general, anything can happen.

THEOREM 2 (8, 9): For n $ 3 alternatives, list the subsets of
two or more alternatives as S1 ,. . . , S2n 2 (n11). Assign to each Sj
a voting vector to tally the ballots and a ranking. For almost all
choices of voting vectors (that is, with the exception of an
algebraic set in an appropriate space), there exists a profile so that
each subset’s sincere election ranking with the specified procedure
is the selected ranking.

Although Theorem 2 requires almost all procedures to suffer
the troubles of the plurality vote, hope comes from the
assertion that a lower dimensional set of methods avoid some
paradoxes. So the next step is to identify the procedure that
minimizes the number and kinds of paradoxes. The answer is
the BC where, for n alternatives, n 2 1, n 2 2, . . . , 0 points are
assigned to a voter’s first-, second-, . . . , last-ranked alterna-
tive.

THEOREM 3 (8, 10): For n . 3 alternatives, use the BC to tally
each subset. Each BC word (that is, each listing of BC election
rankings over the subsets of alternatives) also occurs with all other
ways to tally election outcomes. All other voting vectors admit
words (election paradoxes) that cannot occur with the BC.

Only the BC minimizes problems and maximizes consis-
tencies in election outcomes over the subsets of candidates.
Indeed, if a profile creates troubling BC election rankings
over the subsets, Theorem 3 ensures for all other ways to tally
ballots, some profile exhibits the same troubling outcomes.
All other methods, however, admit election inconsistencies
never suffered by the BC. Thus, only the BC maximizes the
numbers and kinds of positive relationships. As a brief
sample (10–12), only BC’s election rankings must be related
to the pairwise outcomes; for any other positional procedure,
the election outcome can even reverse the pairwise out-
comes. Only BC’s election ranking for all candidates must be
related to its election ranking for all subsets of k candidates;
k 5 2, . . . , n 2 1.

The number of bothersome election paradoxes identified by
these theorems quickly reaches the billions with only five and
six alternatives. All evidence indicates that these serious
concerns cannot be dismissed as coming from rare concocted
examples. Instead, the theorems describe robust events that
remain even after supporting profiles are perturbed (that is, in
an appropriate space, the profiles defining strict outcomes are

Table 3. Three-state apportionment

State Population
Exact

apportionment Integer Apportionment

A 237 2.37 2 3
B 333 3.33 3 3
C 430 4.30 4 4

Total 1,000 10 9 10

Perspective: Saari Proc. Natl. Acad. Sci. USA 96 (1999) 10569
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open sets). With three candidates and conservative assump-
tions about voters’ preferences, about 69% of the preferences
allow outcomes to change with the voting procedure (13); the
evidence shows that the likelihood of problems rapidly in-
creases with the number of alternatives. Indeed, by knowing
what causes the paradoxes, one can identify many actual
elections where it is arguable that the ‘‘winner’’ does not reflect
the voters’ beliefs.

Explanations and Strategic Voting

Now that the extent of election paradoxes is identified by the
above theorems, we need to explain each of them, to charac-
terize all supporting profiles, and to identify all relationships.
This project has recently been completed. (For n 5 3, see ref.
14; for n $ 3, see ref. 12.) These results, which depend on how
structures of ‘‘chaos’’ are modified to analyze voting, statistics,
probability, and so on, involve symmetry groups. A natural
symmetry is ‘‘neutrality;’’ for example, if all voters confused A
and B, then the outcome is corrected by attaching the proper
name to each tally. Namely, election procedures respect per-
mutations of the names of the alternatives. Although this
makes the permutation group a natural symmetry, each subset
has its own permutation group. A ‘‘wreath product of permu-
tation groups’’ captures the relationship among them.

This structure suggests that refined properties arise by
determining how various subsymmetries affect different pro-
cedures. For instance, with n candidates, the Condorcet profile
(15) for n voters is as follows. Start with a first voter’s ranking,
say A s B s. . . s Z. Move each candidate up one position and
place the former top-ranked candidate at the bottom; this
defines B s. . . s Z s A. Continue until rankings for n voters
are defined. As this Zn symmetry orbit treats each candidate
equally (each is in each position exactly once), no candidate is
favored over another; indeed, all positional outcomes are
complete ties. The pairwise vote, however, has a A s B, B s
C, . . . , Z s A cycle with impressive (n 2 1):1 tallies. The source
of this cycle, which has generated a large literature, now is
apparent; pairwise comparisons lose crucial information about
the profile’s full symmetry. Indeed, it is the Condorcet portions
of a profile that force the pairwise outcomes to differ from the
positional ones.

Similarly, by identifying all appropriate subgroup behavior,
all possible paradoxes now can be identified and explained, and
all supporting profiles characterized. The conclusion is that
when a procedure cannot recognize the symmetry of certain
portions of a profile, paradoxes emerge. Only the BC is spared
these difficulties; it avoids them because of the fixed difference
between BC successive weights.

These results also prove that the strange election behavior
documented by the theorems are the rule rather than the
exception. This is in keeping with earlier research, where
preferences are selected in multidimensional spaces (repre-
senting several issues), which proves that for almost all profiles,
our commonly used majority vote suffers severe problems
(16–19). This conclusion holds even if a victory requires more
than half of the voters (20).

Finally, recall the sensitivity of chaos to initial conditions,
where small changes in starting positions can force significantly
different behavior; that is, a different word. In voting, the many
behavioral interpretations for a slightly changed profile (which
defines a new outcome) include strategic voting (21, 22), or
where a voter obtains a personally better outcome by abstain-
ing (for example, ref. 23), and so forth. These results normally
require specialized arguments, but by mimicking the concepts
behind the sensitivity results in chaos, a unified argument and
simple tool (11) emerges that quickly analyzes these properties
for any procedure and allows us to identify where, when, and
why they occur.

For instance, all reasonable procedures can be manipulated
once there are three or more alternatives (21, 22). Some
systems tend to give distorted outcomes (for example, the
plurality vote), so voters are motivated to vote strategically (the
‘‘don’t waste your vote’’ cry), while for others it is easy to
determine how to cast a strategic vote (for example, the BC).
Thus, a reasonable goal is to find the system least likely to allow
a small number of the voters to successfully manipulate the
outcome. The surprise, which contradicts what has been
common belief for two centuries, is that for three alternatives,
it is the BC (11, 24). This conclusion depends on the symmetry
properties of the BC. In other words, again, concepts from
chaos and geometry provide a much clearer picture of
strengths and weaknesses of voting procedures.

Apportionment Problems

Chaos plays an equally strong role in identifying apportion-
ment difficulties whether they involve congressional seats,
draft quotas, the distribution of benefits, and so on. Although
these concerns have been studied for centuries, Huntington’s
(25, 26) work of the 1920s remains among the most insightful.
Interest was resurrected with the Balinski and Young (27)
paper, which cites some of the history and analyzes certain
paradoxes (28). [For added history and discussion, see the 1992
U.S. Supreme Court apportionment decisions (29, 30)]. A
geometric approach that answers many of these concerns is in
ref. 11.

Analyzing apportionment methods has proved to be sur-
prisingly difficult; this is because ‘‘rounding off’’ in higher
dimensions approximates chaos (11). To explain, if the jth
component of p 5 (p1, . . . , ps) represents the fraction of the
population of state j relative to the total population, the exact
apportionment is given by

x9(t) 5 p, or x(t) 5 pt, [1]

where t specifies the number of available seats—the house size.
‘‘Rounding off’’ uses the fractional part of each x(t) compo-
nent. To introduce geometry, let s 5 2, and represent Eq. 1 as
the solid line in Fig. 1a.

To represent the fractional portion of an apportionment, the
integer part needs to be dropped. To do this, notice that when
the apportionment line meets a horizontal line, State 2’s exact
apportionment (x2) is an integer; that is, the x2 fractional part
reverts to zero. So, to drop the integer portion, cut the

FIG. 1. Converting exact apportionments to a flow on a torus.

FIG. 2. Creating a torus from a square.
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apportionment line and slide it to the x2 5 0 axis to reflect this
change (Fig. 1a, dashed line). Similarly, when the apportion-
ment line meets a vertical line, x1 has an integer value. To keep
only the fractional portions, cut the apportionment line and
translate it to the x1 5 0 axis. In this manner, the disjoint lines
in Fig. 1b represent all simultaneous fractional apportion-
ments. The disconnected lines are reconnected in the following
manner. Because the two horizontal edges of the Fig. 1b square
represent the x2 fractional value of zero, they can be glued
together to create a cylinder (Fig. 2). Notice how this con-
struction connects the lines at the top and bottom edge. Doing
the same for the vertical edges shows that the fractional parts
define a smooth line on a torus. Different initial conditions for
Eq. 1 determine different torus lines. For the 50 U.S. states, the
apportionment problem is represented by a flow on a 50-
dimensional torus.

Recall from chaotic dynamics that a simple example of chaos
is this f low on a torus where p2yp1, from p 5 (p1, p2), is an
irrational number (for example, ref. 6). The motion is not
‘‘chaotic’’ when each pj is a fraction, as with apportionments,
but enough chaotic features remain to cause most apportion-
ment difficulties. For intuition, consider a closely related
system of two children on swings. With the same frequency,
they define a fixed pattern. But, the greater the incommen-
surability of the frequencies, the greater the eventual differ-
ences in their positions. Indeed, arbitrarily select a position for
each swing; eventually, each swing will simultaneously be
arbitrarily close to the indicated location. The same is true for
fractional portions of the exact apportionments; with sufficient
disagreement among the ratios of the pjs, the fractional
portions eventually come arbitrarily close to any designated
point on the torus—either the 2-dimensional torus of the
example, or the 50-dimensional one representing the U.S.

To understand the significance, notice how the Table 3
behavior requires a small state’s fractional part to justify an
extra seat, but the next house size increases the fractional terms
of larger states. As an open set of fractional values exhibits this
paradox, the ‘‘near-chaotic behavior’’ of apportionments, or
other rounding-off problems, ensures this behavior most surely
occurs.

THEOREM 4 (11): For n ^ 3 states and almost all populations
figures and any choice of initial conditions, there exists a house
size where at least one state loses a representative as the house size
increases.

Even more worrisome apportionment problems can occur.
Based on a National Academy of Sciences (31) study, the U.S.
has adopted a method to avoid these difficulties; closely related
procedures are used in other countries to determine the
division of seats to political parties when proportional voting
approaches are used. Start with house size 50 (one represen-
tative per state) and successively add a representative up to 435
by assigning each seat to a state based on a ‘‘fairness’’ criterion.
The peculiarities of higher dimensional spaces (11) ensure
other troubling paradoxes. For instance, if a state’s exact

apportionment is 23.2, we expect 23 or 24 seats; but our
procedure can allow an allocation of, say, 18 or 27. Again, with
‘‘chaotic dynamics’’ arguments (using different units), it can be
shown that these are serious concerns. Fortunately, these
problems have not occurred with current population figures.
Nevertheless, ‘‘chaotic’’ and geometric arguments prove that
with a high likelihood and with each census, our procedure
creates perceived inequities—settings that most surely will
generate new U.S. Supreme Court cases.

This research was supported by National Science Foundation Grant
DMI-9971794 and an Arthur and Gladys Pancoe Professorship.
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